- hyperbolic submanifold
- мат.гиперболическое подмногообразие
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Normally hyperbolic invariant manifold — A normally hyperbolic invariant manifold (NHIM) is a natural generalization of a hyperbolic fixed point and a hyperbolic set. The difference can be described heuristically as follows: For a manifold Λ to be normally hyperbolic we are allowed to… … Wikipedia
Non-Euclidean geometry — Behavior of lines with a common perpendicular in each of the three types of geometry Non Euclidean geometry is the term used to refer to two specific geometries which are, loosely speaking, obtained by negating the Euclidean parallel postulate,… … Wikipedia
de Sitter space — In mathematics and physics, a de Sitter space is the analog in Minkowski space, or spacetime, of a sphere in ordinary, Euclidean space. The n dimensional de Sitter space , denoted dSn, is the Lorentzian manifold analog of an n sphere (with its… … Wikipedia
Causal structure — This article is about the possible causal relationships among points in a Lorentzian manifold. For classification of Lorentzian manifolds according to the types of causal structures they admit, see Causality conditions. In mathematical physics,… … Wikipedia
Gauss map — In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S 2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N : X → S 2 such that N ( p ) is a unit… … Wikipedia
List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… … Wikipedia
De Sitter space — In mathematics and physics, n dimensional De Sitter space, denoted dS n, is the Lorentzian analog of an n sphere (with its canonical Riemannian metric). It is a maximally symmetric, Lorentzian manifold with constant positive curvature, and is… … Wikipedia
Heegaard splitting — In the mathematical field of geometric topology, a Heegaard splitting is a decomposition of a compact oriented 3 manifold that results from dividing it into two handlebodies. The importance of Heegaard splittings has grown in recent years as more … Wikipedia
Link (knot theory) — In mathematics, a link is a collection of knots which do not intersect, but which may be linked (or knotted) together. A knot can be described as a link with one component. Links and knots are studied in a branch of mathematics called knot theory … Wikipedia
3-sphere — Stereographic projection of the hypersphere s parallels (red), meridians (blue) and hypermeridians (green). Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles … Wikipedia
Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… … Wikipedia